

US009113991B2

(12) United States Patent

Ostrovsky et al.

(54) ANCHORS FOR BODILY IMPLANTS AND METHODS FOR ANCHORING BODILY IMPLANTS INTO A PATIENT'S BODY

(75) Inventors: Isaac Ostrovsky, Wellesley, MA (US);

Jozef Slanda, Milford, MA (US); James Goddard, Pepperell, MA (US); Ken

Flynn, Woburn, MA (US)

(73) Assignee: Boston Scientific Scimed, Inc., Maple

Grove, MN (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 25 days.

(21) Appl. No.: 13/463,503

(22) Filed: May 3, 2012

(65) **Prior Publication Data**

US 2012/0289980 A1 Nov. 15, 2012

Related U.S. Application Data

- (60) Provisional application No. 61/485,388, filed on May 12, 2011.
- (51) **Int. Cl.**A61B 17/04 (2006.01)

 A61F 2/00 (2006.01)
- (52) **U.S. CI.** CPC *A61F 2/0045* (2013.01); *A61F 2210/0004* (2013.01); *A61F 2220/0008* (2013.01)
- (58) Field of Classification Search CPC ... A61F 2/0045; A61F 2/0063; A61F 2/0811; A61F 2220/0008; A61B 17/0401; A61B

(45) **Date of Patent:**

(10) Patent No.:

(56)

References Cited

US 9,113,991 B2

Aug. 25, 2015

U.S. PATENT DOCUMENTS

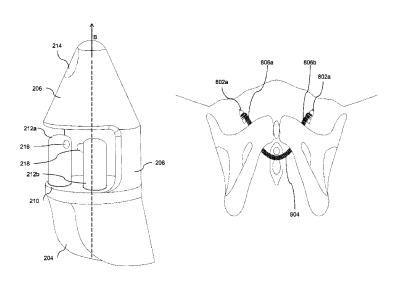
3,003,155 A 5,013,136 A 5,112,344 A 5,197,983 A 5,250,054 A 10/1993 Li (Continued)

FOREIGN PATENT DOCUMENTS

AU 4092199 A 12/1999 CA 2333121 A1 11/1999 (Continued)

OTHER PUBLICATIONS

Search Report and Written Opinion for International Application No. PCT/US2012/036944, mailed Aug. 21, 2012, 12 pages.


(Continued)

Primary Examiner — Katherine M Shi (74) Attorney, Agent, or Firm — Brake Hughes Bellermann LLP

(57) ABSTRACT

An anchor is provided for anchoring a bodily implant within a body of a patient. The anchor includes an implant engaging portion for engaging the bodily implant, wherein the implant engaging portion is disposed on a lateral portion of the anchor. The anchor further includes a distal end portion configured to pass through a passageway in the patient's body, the passageway defining a first axis and a proximal end portion disposed longitudinally opposite to the distal end portion on the anchor. The anchor defines a second axis extending from the distal end portion to the proximal end portion. The anchor is configured to rotate when a force is applied to the bodily implant such that the second axis defined by the anchor forms an angle with the first axis defined by the passageway.

19 Claims, 15 Drawing Sheets

US 9,113,991 B2

Page 2

(56)	References Cited			6,971,252			Therin et al.	
	U.S.	PATENT	DOCUMENTS	7,025,063 7,070,556	B2	7/2006	Snitkin et al. Anderson et al.	
				7,083,568			Neisz et al.	
5,425,740		6/1995 8/1995	Hutchinson, Jr.	7,121,997 7,131,944	B2 B2		Kammerer et al. Jacquetin	
5,439,470 5,439,474		8/1995		7,361,138			Wagner et al.	
5,443,472		8/1995		7,878,969			Chu et al.	
5,449,366		9/1995		8,043,205 2002/0078964			MacLean Kovac et al.	
5,464,189		11/1995		2002/0078964			Cabak et al.	
5,500,000 5,520,703			Feagin et al. Essig et al.	2002/0083820		7/2002	Greenhalgh	
5,549,636	A	8/1996		2002/0091373		7/2002		
5,575,805	A	11/1996	Li	2002/0099258			Staskin et al. Anderson et al.	
5,611,515			Benderev et al.	2002/0099259 2002/0133236			Rousseau	
5,643,266 5,645,589		7/1997 7/1997		2002/0138025			Gellman et al.	
5,649,937			Bito et al.	2002/0147382			Neisz et al.	
5,690,649		11/1997		2002/0156476 2002/0156487		10/2002	Wilford Gellman et al.	
5,697,931 5,702,215		12/1997 12/1997	Thompson	2002/0130487			Neisz et al.	
5,707,395		1/1998		2002/0183762			Anderson et al.	
5,715,942			Li et al.	2002/0188169			Kammerer et al.	
5,741,300		4/1998		2003/0004399 2003/0004580		1/2003	Belson Sump et al.	
5,776,147			Dolendo Landgrebe et al.	2003/0004380			Rousseau	
5,840,011 5,842,478			Benderev et al.	2003/0065246			Inman et al.	
5,860,425	Α	1/1999	Benderev et al.	2003/0078468			Skiba et al.	
5,899,909			Claren et al.	2003/0078604 2003/0114865		4/2003 6/2003	Walshe Sater	
5,919,232 5,922,026		7/1999	Chalfringeon et al.	2003/0114866			Ulmsten et al.	
5,935,138			McJames, II et al.	2003/0130670	A1		Anderson et al.	
5,954,057		9/1999	Li	2003/0171644			Anderson et al.	
6,022,373		2/2000		2003/0176762 2003/0176875			Kammerer Anderson et al.	
6,039,686 6,039,761		3/2000	Kovac Li et al.	2003/0170873			Browning	
6,042,534			Gellman et al.	2003/0191480		10/2003	Ulmsten et al.	
6,042,582	A	3/2000		2003/0199732			Suslian et al.	
6,042,592			Schmitt	2003/0212305 2003/0220538		11/2003	Anderson et al. Jacquetin	
6,096,060 6,099,538			Fitts et al. Moses et al.	2004/0004600		1/2004	Yoneno et al.	
6,110,101			Tihon et al.	2004/0005353			Lopez-Berestein et al.	
6,117,161			Li et al.	2004/0015048 2004/0015057			Neisz et al. Rocheleau et al.	
6,129,762 6,149,669		10/2000 11/2000		2004/0039453			Anderson et al.	
6,200,330			Benderev et al.	2004/0039456	A1	2/2004	Davlin et al.	
6,224,616	B1	5/2001		2004/0087970 2004/0097974			Chu et al. De Leval	
6,273,852		8/2001 3/2002	Lehe et al.	2004/0097974			Benderev	
6,355,053 6,406,423			Scetbon	2004/0133217			Watschke	
6,451,030		9/2002	Li et al.	2004/0144395			Evans et al.	
6,452,450			Enriquez	2004/0230092 2004/0243166			Thierfelder et al. Odermatt et al.	
6,464,706 6,478,727		10/2002 11/2002					Haut et al	606/232
6,491,703			Ulmsten	2004/0249240	A1	12/2004	Goldmann et al.	
6,506,190	B1	1/2003	Walshe	2004/0249397			Delorme et al.	
6,575,897			Ory et al.	2004/0249473 2004/0267088			Delorme et al. Kammerer	
6,582,443 6,592,515			Cabak et al. Thierfelder et al.	2005/0004424			Raz et al.	
6,599,323			Melican et al.	2005/0004426			Raz et al.	
6,612,977			Staskin et al.	2005/0004427 2005/0004576			Cervigni Benderev	
6,638,211 6,641,524		10/2003 11/2003	Suslian et al.	2005/0004376			De Leval	
6,641,525			Rocheleau et al.	2005/0043820		2/2005	Browning	
6,648,921	B2		Anderson et al.	2005/0055027			Yeung et al.	
6,652,450			Neisz et al.	2005/0065395 2005/0070829			Mellier Therin et al.	
6,666,817 6,685,629		12/2003 2/2004		2005/0070825			Merade	
6,691,711			Raz et al.	2005/0107805	A1	5/2005	Bouffier et al.	
6,695,855	B1	2/2004	Gaston	2005/0107834			Freeman et al.	
6,786,861			Pretorius	2005/0234460		10/2005		
6,808,486 6,808,487			O'Donnell Migliari	2005/0245787 2005/0250977			Cox et al. Montpetit et al.	
6,852,330			Bowman et al.	2005/0267325			Bouchier et al.	
6,884,212	B2	4/2005	Thierfelder et al.	2005/0278037	A1	12/2005	Delorme et al.	
6,884,428			Binette et al.	2006/0041185			Browning	
6,911,003			Anderson et al.	2006/0058578 2006/0089525			Browning Mamo et al.	
6,936,052 6,960,160			Gellman et al. Browning	2006/0205995			Browning	
2,200,100		11,2003		2000, 0203993		2.2000		

(56)	Referen	nces Cited	WO 2005/112842 A1 12/2005			
	U.S. PATENT	DOCUMENTS	WO 2005/122721 A2 12/2005 WO 2005/122954 A1 12/2005 WO 2009/102945 A2 8/2009			
2007/001	.5953 A1 1/2007	MacLean	WO 2012/154742 A1 11/2012			
		Deegan et al. Morningstar et al 600/37	OTHER PUBLICATIONS			
		MacLean	"New Improvements in the Treatment of Female Stress Inconti-			
	FOREIGN PATE	NT DOCUMENTS	nence", European Association of Urologists, American Medical Sys-			
	TOREIGNTATE	NI DOCUMENTS	tems, Mar. 2003, 34 pages.			
CA EP	2427882 A1 0632999 A1	4/2002 1/1995	"The Confident approach to curing incontinence", Monarch			
EP	0643945 A2	3/1995	Subfascial hammock, American Medical Systems, 5 pages. Kovac, et al., "Pubic Bone Suburethral Stabilization Sling for Recur-			
EP	0677297 B1	12/2000	rent Urinary Incontinence", Obstetrics & Gynecology, vol. 89, No. 4,			
EP EP	1191902 A1 0774240 B1	4/2002 3/2003	Apr. 1997, pp. 493-642. Retrieved from: http://journals.lww.com/			
EP EP	1342454 A1	9/2003	greenjournal/Abstract/1997/04000/Pubic_Bone.			
EP	1345550 A1	9/2003	Palma et al., "Safyre: A Readjustable Minimally Invasive Sling for			
EP	1333776 B1	6/2004	Female Urinary Stress Incontinence", SafyrenTM, International			
EP EP	1324705 B1 1079740 B1	8/2006 8/2007	Journal of the Brazilian Society of Urology, vol. 29 No. 4, 2003, pp.			
FR	2811218 A1	1/2002	353-359.			
GB	2382993 A	6/2003	Siegel, A. L., "Vaginal Mesh Extrusion Associated with use of Mentor Transobturator Sling", Elsevier, Inc., Adult Urology, 2005, pp.			
WO WO	95/18571 A1 97/13465 A1	7/1995 4/1997	995-999.			
WO	97/16121 A1	5/1997	Dargent et al., "Insertion of a sub urethral sling through the obturating			
WO	98/35632 A1	8/1998	membrane in the treatment of female urinary incontinence", Gynécol			
WO WO	99/59477 A1 00/40158 A2	11/1999 7/2000	Obstét Fertil, vol. 30, 2002, pp. 576-582.			
WO	00/74594 A1	12/2000	Dargent et al., "Pose d'un ruban sous uretral oblique par voie			
WO	00/74613 A1	12/2000	obturatrice dans le traitement de l'incontinence urinaire feminine",			
WO WO	01/06951 A1	2/2001	Gynécol Obstét Fertil, vol. 30, 2002, 1 page. De Leval, J., "Novel Surgical Technique for the Treatment of Female			
WO	01/45588 A2 01/78609 A2	6/2001 10/2001	Stress Urinary Incontinence: Transobturator Vaginal Tape Inside-			
WO	02/02031 A1	1/2002	Out", European Urology vol. 44, 2003, pp. 724-730.			
WO	02/19945 A2	3/2002	Delorme et al., "Transobturator Tape (Uratape®): A New Minimally-			
WO WO	02/26108 A2 02/28312 A1	4/2002 4/2002	Invasive Procedure to Treat Female Urinary Incontinence", European			
WO	02/30293 A1	4/2002	Urology 45, 2004, pp. 203-207.			
WO	02/39890 A2	5/2002	Delorme, E., "The transobdurator band: a minimmaly invasive pro-			
WO WO	02/069781 A2 02/071953 A2	9/2002 9/2002	cedure for treatment of urinary stress incontinence in women", Progress in Urology, vol. 11, 2001, pp. 1306-1313.			
WO	02/078548 A1	10/2002	Hermieu et al., "Les bandelettes sous-urétrales synthétiques dans le			
WO	02/078568 A1	10/2002	traitement de l'incontinence urinaire d'effort féminine", Progrés en			
WO WO	03/002027 A1 03/002029 A1	1/2003 1/2003	Urologie, vol. 13, 2003, pp. 636-647.			
WO	03/007847 A1	1/2003	Ingelman-Sundberg et al., "Surgical Treatment of Female Urinary			
WO	03/028584 A2	4/2003	Stress Incontinence", Contr. Gynec Obstet, vol. 10, 1983, pp. 51-69. Nickel, R. F., "Transpelvic Sling Urethroplasty with and without			
WO WO	03/032867 A1 03/034939 A1	4/2003 5/2003	Colpususpension for the Treatment of Complicated Urinary Inconti-			
WO	03/071962 A2	9/2003	nence in Bitches", Third Annual Scientific meeting (ECVS), Ric-			
WO	03/073960 A1	9/2003	cione, Jun. 23-26, 1994.			
WO WO	03/086205 A2 03/096929 A1	10/2003 11/2003	Final Office Action for U.S. Appl. No. 13/242,821, mailed Nov. 20,			
WO	03/096930 A1	11/2003	2013, 12 pages. RCE and Office Action Response for U.S. Appl. No. 13/242,821,			
WO	2004/004600 A1	1/2004	filed Feb. 19, 2014, 11 pages.			
WO WO	2004/012579 A2	2/2004 2/2004	Non-Final Office Action for U.S. Appl. No. 13/242,821, mailed Mar.			
WO	2004/012626 A1 2004/016196 A2	2/2004 2/2004	7, 2014, 11 pages.			
WO	2004/019786 A1	3/2004	Final Office Action for U.S. Appl. No. 131242,821, mailed on Feb. 9,			
WO	2004/045457 A1	6/2004	2015, 6 pages.			
WO WO	2005/007079 A2 2005/094721 A1	1/2005 10/2005	* cited by examiner			

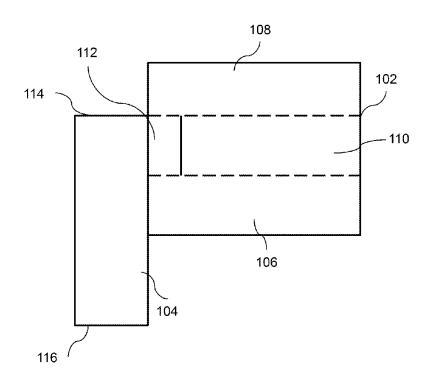


Fig. 1

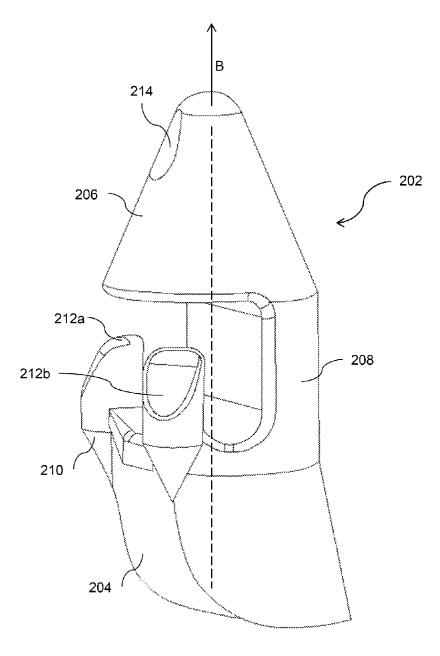


Fig. 2A

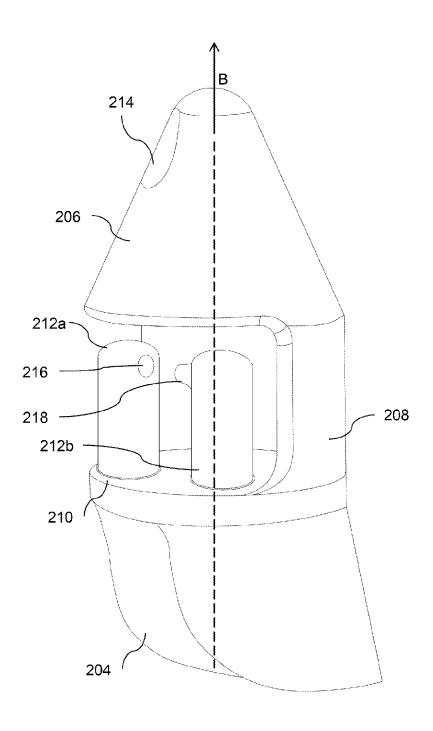


Fig. 2B

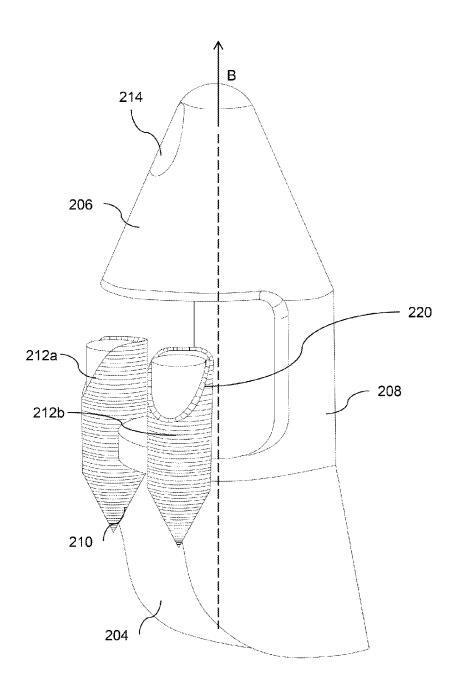


Fig. 2C

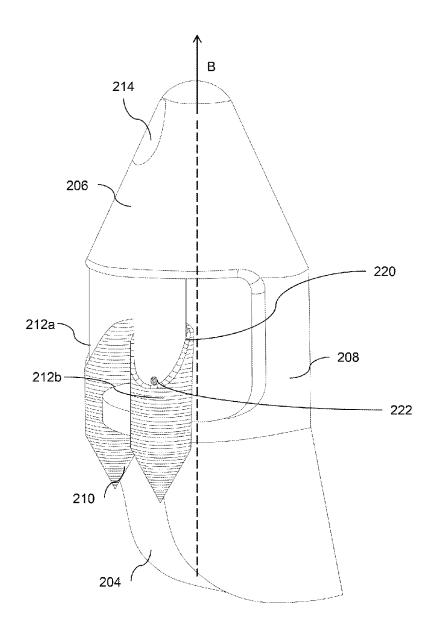


Fig. 2D

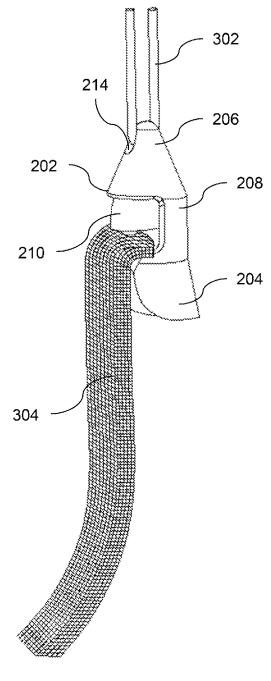


Fig. 3

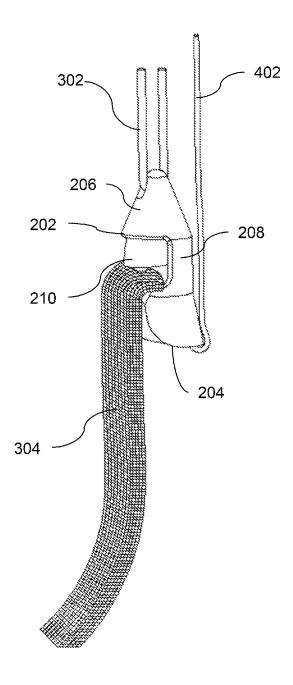
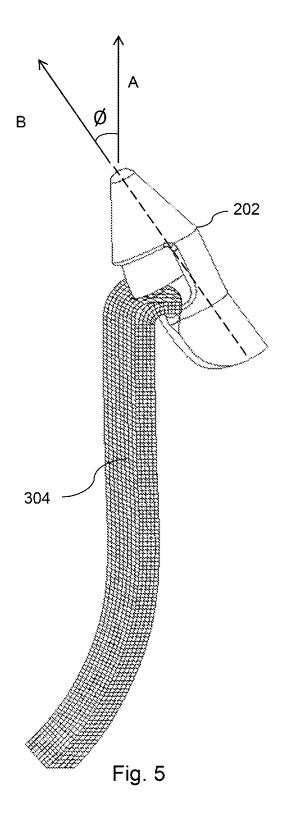



Fig. 4

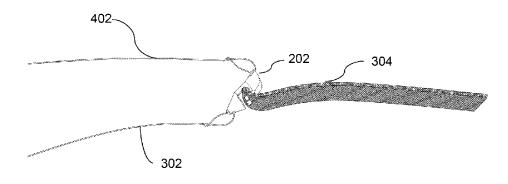


Fig. 6

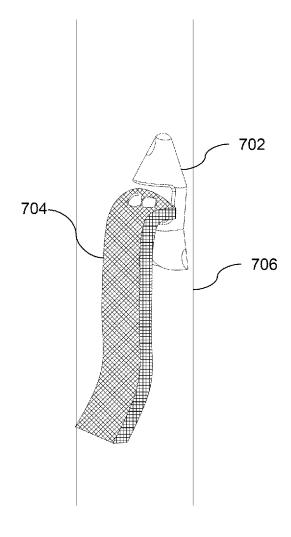


Fig. 7A

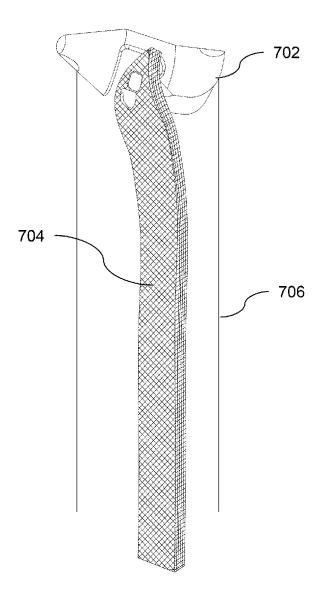


Fig. 7B

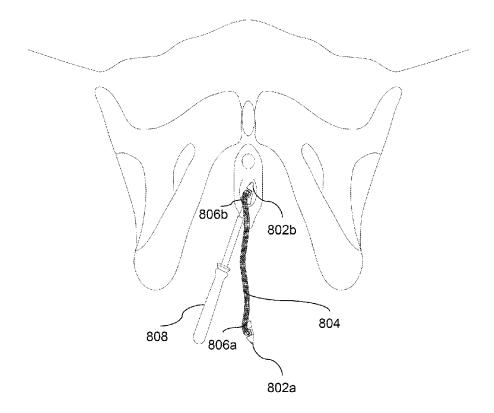


Fig. 8A

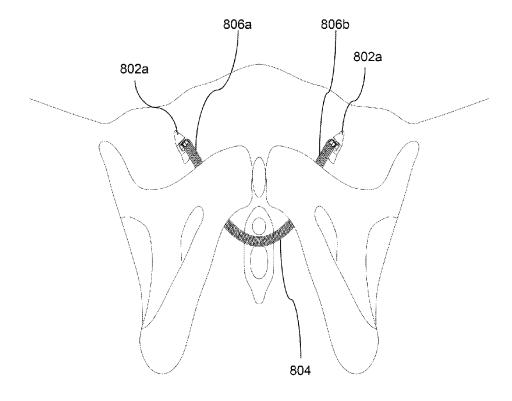
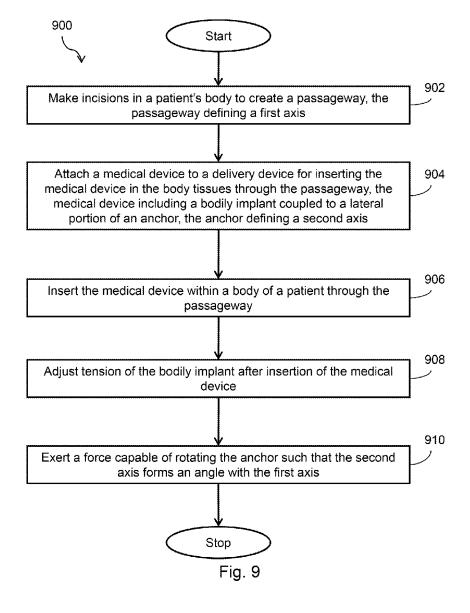



Fig. 8B

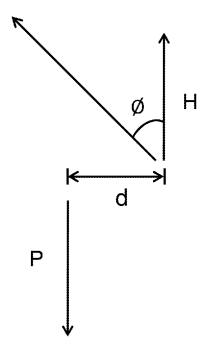


Fig. 10

1

ANCHORS FOR BODILY IMPLANTS AND METHODS FOR ANCHORING BODILY IMPLANTS INTO A PATIENT'S BODY

CROSS-REFERENCE TO RELATED APPLICATION

This application is a Nonprovisional of, and claims priority to, U.S. patent application Ser. No. 61/485,388, filed May 12, 2011, entitled "ANCHORS FOR BODILY IMPLANTS AND METHODS FOR ANCHORING BODILY IMPLANTS INTO A PATIENT'S BODY", which is incorporated by reference herein in its entirety.

BACKGROUND

1. Field

The invention generally relates to medical devices and procedures, and more particularly to anchors for bodily implants and methods for anchoring the bodily implants into a patient's body.

2. Description of the Related Art

A common practice while inserting bodily implants, such as slings used in the treatment of urinary incontinence or fecal incontinence, is to use anchors. An anchor assists in holding a bodily implant and prevents it from being dislodged from its intended location with respect to an anatomy of a patient's body. The anchor works by engaging with surrounding anatomy and creating sufficient force to hold the bodily implant in its intended position.

Existing anchors are designed with anchoring protrusions.

These protrusions vary in size based on the holding force required to anchor the bodily implants. In some existing anchors, the greater the holding force required, the longer the protrusions are. In some existing anchors, the protrusions are sharpened at their distal ends to ensure engagement of the anchors with surrounding tissues within the patient's body.

However, it may be undesirable to leave the bodily implants, which have sharp edges protruding outwards, within the patient's body as the sharp edges may damage the surrounding tissues causing pain and discomfort. Further, such anchors may also cause damage to internal tissues of the patient's body during insertion and removal of anchors.

Thus, there is a need for an anchor that precludes the need for protrusions with sharp edges. Further, there is a need for an anchor that can exert a holding force on a bodily implant to anchor it at a suitable location in the patient's body.

SUMMARY

An anchor is provided for anchoring a bodily implant within a body of a patient. The anchor includes an implant engaging portion for engaging the bodily implant, wherein the implant engaging portion is disposed on a lateral portion of the anchor. The anchor further includes a distal end portion configured to pass through a passageway in the patient's body, the passageway defining a first axis and a proximal end portion disposed longitudinally opposite to the distal end portion on the anchor. The anchor defines a second axis extending from the distal end portion to the proximal end portion. The anchor is configured to rotate when a force is applied to the bodily implant such that the second axis defined by the anchor forms an angle with the first axis defined by the passageway.

BRIEF DESCRIPTION OF THE FIGURES

The invention and the following detailed description of 65 certain embodiments thereof may be understood with reference to the following figures:

2

FIG. 1 is a schematic diagram of an anchor affixed to an end portion of a bodily implant, in accordance with an embodiment of the present invention.

FIGS. 2A-2D illustrate perspective views of an anchor for affixing an end portion of a bodily implant, in accordance with various embodiments of the present invention.

FIG. 3 is a perspective view of an anchor with a delivery lead coupled to a distal end portion of the anchor, in accordance with an embodiment of the present invention.

FIG. 4 is a perspective view of an anchor with a tilt control lead coupled to a proximal end portion of an anchor, in accordance with an embodiment of the present invention.

FIG. 5 is a perspective view of an anchor in a rotated configuration depicting an angle formed between a first axis and a second axis.

FIG. 6 is a perspective view of an anchor coupled to a delivery lead and a tilt control lead, in accordance with another embodiment of the present invention.

FIG. 7A illustrates an exploded perspective view of an anchor within a bodily passageway during delivery.

FIG. 7B illustrates an exploded perspective view of an anchor within a bodily passageway after being rotated by an angle.

FIGS. **8**A and **8**B depict an illustrative method of implanting a bodily implant in a periurethral tissue of a patient, in accordance with an embodiment of the present invention.

FIG. **9** is a flowchart illustrating a method of implanting a bodily implant in a body of a patient, in accordance with an embodiment of the present invention.

FIG. 10 is a schematic diagram illustrating the mechanics of the forces, in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

Detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure. Further, the terms and phrases used herein are not intended to be limiting, but rather to provide an understandable description of the invention.

The terms "a" or "an," as used herein, are defined as one or more than one. The term "another," as used herein, is defined as at least a second or more. The terms "including" and/or "having", as used herein, are defined as comprising (i.e., open transition). The term "coupled" or "operatively coupled," as used herein, is defined as connected, although not necessarily directly and mechanically.

In general, the invention is directed to systems, methods, and devices for treating urinary incontinence. As described below in various illustrative embodiments, the invention provides systems, methods, and devices employing an improved soft tissue anchor termed as anchor for anchoring an end of a bodily implant in place, at least temporarily within a body of a patient. In accordance with several other embodiments, the invention may be used for the treatment of fecal incontinence as well.

The term patient may be used for a person who benefits from the anchors disclosed in the present invention. For example, the patient can be a person whose body receives the bodily implant with the disclosed anchor at its end in a sur-

gical treatment. For example, in some embodiments, the patient may be a human female, a human male, or any other

The terms proximal and distal described in relation to various devices, apparatuses, and components as discussed in 5 the subsequent text of the present invention are referred with a point of reference. The point of reference, as used in this description, is a perspective of an operator. The operator may be a surgeon, a physician, a nurse, a doctor, a technician, and the like who may perform the procedure of delivery and placement of the bodily implants into the patient's body as described in the present invention. The term proximal refers to an area or portion that is closer or closest to the operator during a placement procedure. The term distal refers to an area or portion that is further or farthest from the operator.

FIG. 1 is a schematic diagram of an anchor 102 affixed to an end portion of a bodily implant 104, in accordance with an embodiment of the present invention. The anchor 102 and the bodily implant 104 that are configured to be placed inside a patient's body can together be hereafter referred to as a medi- 20 ing, latching, and engaging mechanisms may be provided on cal device 100 for the simplicity of the description.

The anchor 102 includes a proximal end portion 106, a distal end portion 108, and a medial portion 110. The distal end portion 108 is configured to pass through a passageway in the patient's body. For example, in some embodiments, the 25 distal end portion 108 is configured to pass through a passageway that is formed during insertion of the anchor 102. In some embodiments, the passageway defines a first axis A. The proximal end portion 106 is disposed longitudinally opposite to the distal end portion 108 on the anchor 102 such that the 30 proximal end portion 106 and the distal end portion 108 lie at two ends of the anchor 102. The medial portion 110 (that, in some embodiments, integrally forms a middle part of the anchor 102 between the proximal end portion 106 and the distal end portion 108) further includes an implant engaging 35 portion 112 for engaging the bodily implant 104. The implant engaging portion 112 is disposed on a lateral or side portion of the anchor 102 such that the bodily implant 104 is asymmetrically attached to the anchor 102. Further, the implant engaging portion 112 extends from the proximal end portion 106 40 toward the distal end portion 108 such that the longitudinal axis of the implant engaging portion 112 is parallel to the longitudinal axis of the anchor 102.

The bodily implant 104 can be coupled to the implant engaging portion 112 in various ways. There can be different 45 types of mechanisms to couple the bodily implant, in accordance with various embodiments. For example, the bodily implant 104 can be pierced within the implant engaging portion 112 and subsequently glued, stapled, or tied to the implant engaging portion 112. Numerous types of designs of 50 the implant engaging portion 112 are possible depending on the nature of mechanism of engaging the bodily implant 104.

In accordance with some embodiments, the implant engaging portion 112 includes at least one protuberance for engaging the bodily implant 104 therewith. The at least one protu- 55 berance is designed to extend longitudinally from a lower portion of the implant engaging portion 112 and configured to hold the bodily implant 104 at place. The at least one protuberance may be a small extension or projection extending from the lateral or side portion of the anchor 102.

In some embodiments, there can be only one protuberance. In some other embodiments, there can be two protuberances, a first protuberance and a second protuberance. The first and the second protuberances are configured so that the bodily implant 104 can be pierced through them and fixed therein. In 65 some embodiments, the first protuberance and the second protuberance are configured to interlock with each other and

engage the bodily implant 104 therein. In accordance with these embodiments, the first protuberance may include a male coupling member and the second protuberance may include a female coupling member such that the coupling members may fit in an interlocked manner.

In some embodiments, the at least one protuberance may include a movable locking mechanism for engaging the bodily implant 104. The movable locking mechanism may be configured to latch or lock the bodily implant 104 to fixedly couple the implant 104 to the engaging portion 112. In some embodiments, the movable locking mechanism may be operated through a sliding mechanism such that the bodily implant 104 is latched or coupled to the implant engaging portion 112 by slidably moving the at least one protuberance relative to the anchor 102. At least one opening may be provided on the implant engaging portion 112 such that the at least one protuberance may slidably fit into the at least one opening.

In still various other embodiments, several types of lockthe implant engaging portion 112 that are capable of holding and engaging the bodily implant 104.

In embodiments, the anchor 102 is elongated in nature such that a length of the anchor 102 which extends longitudinally is substantially more than a width of the anchor 102 which extends transversely. The anchor 102 defines an axis (second axis B) extending from the distal end portion 108 toward the proximal end portion 106.

The proximal end portion 106 and the distal end portion 108 may have any suitable size and shape. In some embodiments, the distal end portion 108 is substantially conical. In other embodiments, the distal end portion 108 may be substantially rectangular, circular, and the like. In some embodiments, the proximal end portion 106 is substantially cylindrical. In other embodiments, the proximal end portion 106 is substantially rectangular, circular, and the like. A tip portion of the distal end portion 108 that is configured to pass through the passageway in the patient's body may be shaped conically and sharp in nature. In general, the anchor 102 may have any shape and size that is suitable for affixing the anchor 102 within an anatomical membrane, muscle, ligament, soft tissue, bone or any other anatomical site.

In some embodiments, the anchor 102 may be made of any suitable biocompatible material. In other embodiments, the anchor 102 may be made, for example, of a synthetic material such as nylon, polyethylene, polyester, polypropylene, fluoropolymers or a co-polymer thereof. In some other embodiments, they may be formed, at least in part, from a mammalian tissue material such as bovine, porcine, equine, human cadaveric or engineered tissue. In still other embodiments, the material of the anchor 102 may include a combination of synthetic and mammalian tissue/biocompatible materials. In some embodiments, the anchor 102 is made of a metal, ceramic, polymer, magnet, or an alloy.

According to some embodiments, at least a portion of the anchor 102 is biodegradable and may also dissolve and/or be absorbed by the patient's tissues. Exemplary biodegradable materials that may be employed for at least a portion of the anchor 102 include, but are not limited to, polylactic acid, 60 polyglycolic acid, and copolymers and mixtures thereof, such as poly(L-lactide) (PLLA), poly(D,L-lactide) (PLA), polyglycolic acid [polyglycolide (PGA)], poly(L-lactide-co-D,Llactide) (PLLA/PLA), poly(L-lactide-co-glycolide) (PLLA/ PGA), poly(D,L-lactide-co-glycolide) (PLA/PGA), poly (glycolide-co-trimethylene carbonate) (PGA/PTMC), poly (D,L-lactide-co-caprolactone) (PLA/PCL), and poly (glycolide-co-caprolactone) (PGA/PCL); polyethylene oxide

(PEO); polydioxanone (PDS); polypropylene fumarate; polydepsipeptides, poly(ethyl glutamate-co-glutamic acid), poly(tert-butyloxy-carbonylmethyl glutamate); polycaprolactone (PCL), poly(hydroxy butyrate), polycaprolactone co-butylacrylate, polyhydroxybutyrate (PHBT) and copolymers of polyhydroxybutyrate; polyphosphazenes, polyphosphate ester); maleic anhydride copolymers, polyiminocarbonates, poly[(97.5% dimethyl-trimethylene carbonate)-co-(2.5% trimethylene carbonate)], cyanoacrylate, hydroxypropylmethylcellulose; polysaccharides, such as hyaluronic acid, chitosan and regenerate cellulose; poly(amino acid) and proteins, such as gelatin and collagen; and mixtures and copolymers thereof

In some embodiments, the anchor 102 may be configured to be dissolved within a particular time range. The anchor 102 may be configured, for example, to substantially absorb (or have a portion that substantially absorbs) into the patient's tissues within about 2, 4, 6 or 8 or more weeks from the time the bodily implant 104 is implanted. Preferably, the anchor 102 remain structurally intact long enough for scar tissue and/or other neighboring cells or tissues to grow into the bodily implant 104 to effectively anchor it in place.

The bodily implant 104 that is affixed with the use of the anchor 102 is configured to be placed within the patient's 25 body and support a portion of the body. For example, the bodily implant 104 can be shaped and sized to support a portion of the body around a bladder, urethra, anal canal, rectum, and anus of the patient. The bodily implant 104 has a first end portion 114 and a second end portion 116 such that the bodily implant 104 extends along a length between the first end portion 114 and the second end portion 116. The length and width of the bodily implant 104 may vary based on its intended use. The bodily implant 104 can be of a variety of sizes, shapes, and configurations depending on the intended use and locations of placement of the bodily implant 104.

In some embodiments, the bodily implant 104 is formed of a material that allows tissue in-growth after implantation. Various types of woven tapes, fabrics, or meshes may be utilized in the fabrication and manufacturing of the bodily 40 implant 104, in accordance with various embodiments of the present invention. The bodily implant 104 may utilize a variety of mesh materials and may be designed in a variety of forms. An example of a mesh utilized in the bodily implant 104 is Polyform® Synthetic Mesh developed by the Boston 45 Scientific Corporation. The Polyform® Synthetic Mesh is made from uncoated monofilament macro-porous polypropylene. The bodily implant 104 may also be made from a biological material or a cadaveric tissue. In some embodiments, the bodily implant 104 has a smooth surface. In such 50 embodiments, the smooth surface may avoid or reduce irritation on adjacent body tissues during mesh-tissue interactions. Additionally, the bodily implant 104 may be stretchable and flexible to adapt movements in accordance with the anatomy of the human body and reduce suture or anchor pullout. 55 Furthermore, softness, lightness, conformity, and strength are certain other attributes required in the bodily implant 104 for efficient tissue repair and implantation. In an embodiment, the bodily implant 104 can have a coating. For example, the bodily implant 104 can be coated with an antimicrobial agent 60 and/or an antifungal agent.

FIG. 2A-2D illustrate perspective views of an anchor 202 for affixing an end portion of a bodily implant such as the bodily implant 104 as illustrated in FIG. 1, in accordance with an embodiment of the present invention. As depicted, the 65 anchor 202 includes a proximal end portion 204, a distal end portion 206 and a medial portion 208.

6

The distal end portion 206 is configured to pass through a passageway in the patient's body such that the passageway defines a first axis A. In some embodiments, the distal end portion 206 is configured to create the passageway as it is inserted into the body of the patient. The proximal end portion 204 is disposed longitudinally opposite to the distal end portion 206 on the anchor 202. The medial portion 208 further includes an implant engaging portion 210 for engaging the bodily implant. The implant engaging portion 210 is disposed on a lateral or side portion of the anchor 202 such that the bodily implant is asymmetrically attached to the anchor 202. The implant engaging portion 210 extends axially from the proximal end portion 204 toward the distal end portion 206 and positioned asymmetrically at a lateral part of the medial portion 208. The term asymmetric attachment means that the bodily implant is coupled at only one side of the longitudinal axis of the anchor 202 and not on both sides. The effect of asymmetric attachment is available along only one lateral side rather than on the longitudinal axis at the center of the anchor 202.

According to some embodiments, the implant engaging portion 210 is formed integrally with the medial portion of the anchor 208. In other embodiments, the implant engaging portion 210 is separable from the medial portion 208 such that it is configured to removably fit into the medial portion 208. The anchor 202 defines a second axis B extending from the distal end portion 206 toward the proximal end portion 204. The second axis B coincides with the longitudinal axis along the length of the anchor 202.

As illustrated in FIGS. 2A-2D, the implant engaging portion 210 further includes two protuberances, a first protuberance 212a and a second protuberance 212b. There can be different types of mechanisms to couple the bodily implant through the first protuberance 212a and the second protuberance 212b, in accordance with various embodiments. For example, the bodily implant can be pierced through the protuberances 212a and 212b, and subsequently glued, stapled, or tied. Numerous types of designs of the protuberances 212a and 212b are possible depending on the nature of mechanism for engaging the bodily implant.

In some embodiments, the first protuberance 212a and the second protuberance 212b are designed to extend longitudinally from a lower portion of the implant engaging portion 210 and configured to hold the bodily implant at place. The protuberances 212a and 212b may be designed in the form of small extensions or projections extending from the lateral or side portion of the anchor 202, as illustrated in FIG. 2A.

In some embodiments, the first protuberance **212***a* and the second protuberance **212***b* are configured to interlock with each other and engage the bodily implant therein. In accordance with these embodiments, the first protuberance **212***a* may include a female coupling member **216** and the second protuberance **212***b* may include a male coupling member **218**, as shown in FIG. **2B**. The coupling members **216** and **218** can fit into one another for interlocking.

In some embodiments, the first protuberance 212a and the second protuberance 212b may include a movable locking mechanism 220 for engaging the bodily implant, as shown in FIGS. 2C and 2D. The movable locking mechanism 220 may be configured to latch or lock the bodily implant to fixedly couple the implant to the engaging portion 210. In some embodiments, the movable locking mechanism 220 may be operated through a sliding mechanism such that the bodily implant is latched or coupled to the implant engaging portion by slidably moving the protuberances 212a and 212b relative to the anchor 102. FIG. 2D shows a latched configuration achieved after sliding. A latch 220 may be provided with the

sliding mechanism 220 to retain the protuberances 212a and 212b in the latched configuration. Two openings (not shown) may be provided on the implant engaging portion 210 such that the protuberances 212a and 212b may slidably fit into the openings.

In still various other embodiments, several types of locking, latching, and engaging mechanisms may be provided that are capable of locking and latching the body implant with the protuberances 212a and 212b. In accordance with various embodiments, the first protuberance 212a and the second protuberance 212b are designed to be projectionless and barbless such that these protuberances, specifically their tip portions do not harm and irritate the body tissues.

The anchor 202 can have a variety of shapes and sizes similar to the anchor 102 as described in conjunction with 15 FIG. 1. Similarly, the material and composition of the anchor 202 can vary as described in conjunction with FIG. 1.

As illustrated in FIGS. 2A-2D, the anchor 202 includes or defines a first opening or lumen 214 defined on the distal end portion 206 of the anchor 202. The first opening 214 is disposed on the distal end portion 206 such that the lateral ends of the first opening 214 passes through two conical edges of the distal end portion 206. A second opening or lumen (not shown) is provided on the proximal end portion 204. The second opening can be provided at a lateral surface of the 25 proximal end portion 204 or at a bottom surface of the anchor 202. In some embodiments, the second opening is asymmetrically disposed on the anchor 202 such that a distance of the second opening from a first lateral edge of the anchor 202 is more than a distance of the second opening from a second lateral edge of the anchor 202. In some embodiments, the second opening may extend from a lateral edge of the anchor 202 to a bottom portion of the anchor 202. In accordance with various embodiments, the shape and size of the first and the second openings (hereafter referred to as openings together) 35 may vary based on the intended use and the requirements.

The first opening 214 is defined to receive and engage a first lead termed as a delivery lead 302 with the anchor 202, as illustrated in FIG. 3. In some embodiments, the delivery lead coupled to a delivery tool such as a surgical needle. In some embodiments, the loop may be some kind of a suture loop. The delivery lead 302 can be brought though body tissues to assist in the delivery of a bodily implant such as the bodily implant 304. The anchor 202 can be forced into the passage- 45 way within the body tissues by applying forces on the delivery lead 302. As illustrated in FIG. 4, the second opening is defined to receive and engage a second lead termed as a tilt control lead 402. The tilt control lead 402 can be brought through the body tissues along with the delivery lead 302. The 50 tilt control lead 402 is used to rotate the anchor 202 such that an angle Ø is formed between the first axis A (defined by the passageway) and the second axis B (defined by the anchor) in FIG. 5. The angle Ø thus formed assists in anchoring the bodily implant such as the bodily implant 304 with the body 55 tissues. FIG. 6 illustrates a perspective view of the delivery lead 302 and the tilt control lead 402 coupled to the anchor 202. As shown, the leads 302 and 402 can form a loop at the coupling end such that the leads 302 and 402 can be removed easily after placement of the anchor 202 by cutting the loops. 60

FIG. 7A illustrates an exploded perspective view of an anchor 702 within a bodily passageway 706 during delivery. The anchor 702 is coupled to a bodily implant 704. The longitudinal axis of the anchor 702 is substantially parallel to the direction of the bodily passageway 706 during delivery. 65 FIG. 7B illustrates an exploded view of the anchor 702 after being rotated by an angle upon placement. In this configura-

tion, the anchor 702 engages with the bodily tissues since the length of the anchor 702 (along its longitudinal axis) is more than its width. The measure of the angle by which the anchor 702 is rotated can vary depending on the amount of rotational torque or turning momentum generated to cause the rotation of the anchor 702.

FIGS. 8A and 8B depict an illustrative method of implanting a bodily implant such as the bodily implant 804 in a periurethral tissue of a patient to form a platform under a urethra of the patient. As illustrated in FIG. 8A, a first anchor **802***a* is fitted on a first end portion **806***a* of the bodily implant **804** and a second anchor **802**b is fitted on a second end portion 806b of the bodily implant 804. The two anchors 802a and **802**b are configured to anchor and hold the bodily implant **804** at two end portions **806***a* and **806***b* such that the bodily implant 804 is fixedly supported inside the body tissues in an appropriate tension. In some embodiments, at least one of the anchors 806a and 806b are similar to the anchor 102 illustrated in conjunction with FIG. 1. In other embodiments, at least one of the anchors 806a and 806b are similar to the anchor 202 illustrated in conjunction with FIG. 2.

FIG. 9 is a flowchart illustrating a method 900 for anchoring a bodily implant such as the bodily implant 804 within a body of a patient. In accordance with various embodiments, an anchor such as the anchor 802a can be used to fix the bodily implant 804 in place. The anchor 802a has a length that is substantially more than its width. During delivery, the anchor 802a is inserted along a longitudinal direction, which is parallel to axis of the bodily passageway. After insertion, the anchor **802***a* is rotated by an angle with respect to the bodily passageway. In this configuration, the longitudinal direction of the anchor 802a is substantially perpendicular to the passageway. Since the length of the anchor 802a is more than the width of the bodily passageway, the anchor 802a gets engaged within the bodily tissues. Similarly, the anchor 802b can also be used to fix the other end of the bodily implant 804. The configuration of the anchor (during delivery and after rotation) is illustrated in FIGS. 7A and 7B, respectively.

Referring now to FIGS. 8A, 8B, and 9 together, a specific can include a loop at one of its end portions configured to be 40 method for implanting and anchoring a bodily implant such as the bodily implant 804 is described in accordance with an embodiment of the present invention. At step 902, an incision is made in an anterior vaginal wall and dissected bilaterally to the interior portion of an inferior pubic ramus of the patient. The vaginal incision creates a passageway from the vaginal opening to urethral sphincter that is responsible for controlling the flow of urine. The vaginal incision allows the bodily implant 804 to be placed correctly under the urethra, without passing a delivery tool 808 through the retropubic space and abdominal wall unknowingly causing damage. The direction of the passageway defines a first axis. The first axis is along the direction of insertion through the body tissues. In some embodiments, an operator further makes second and third incisions in groin areas—one on a left groin area and the other on a right groin area on either side of the pubis. In other embodiments, the second and the third incisions can be made in the obturator membrane or in the abdomen.

> At step 904, the operator attaches/couples a medical device to the delivery tool 808. The medical device includes the bodily implant 804 coupled to lateral portions of the anchors 802a and 802b at its two end portions 806a and 806b as illustrated in FIGS. 8A and 8B. For example, a first anchor **802***a* is coupled to a first end portion **806***a* of the bodily implant 804 through a first implant engaging portion and a second anchor 802b is coupled to a second end portion 806b of the bodily implant 804 through a second implant engaging portion. The first anchor 806a defines a second axis extending

from a distal end portion toward a proximal end portion of the first anchor **806***a*. The second axis for the first anchor **806***a* coincides with the longitudinal axis along the length of the first anchor **806***a*. Similarly, the anchor **806***b* also defines a second axis extending from a distal end portion toward a proximal end portion of the second anchor **806***b*. The second axis for the second anchor **806***b* coincides with the longitudinal axis along the length of the second anchor **806***b*.

The delivery tool **808** may be an elongated member such as a surgical needle that may be fitted to an anchor such as the anchor **806**a and **806**b during delivery of a bodily implant such as the bodily implant **804** as shown in FIG. **8A**. The delivery tool **808** may include a shaft that may be substantially straight, curved or include both curved and straight portions. In some embodiments, a distal tip of the shaft is conically shaped to provide a sharp end facilitating insertion of the bodily implant **804** and the anchors **806**a and **806**b inside the body tissues.

At step 906, the medical device is inserted through the passageway in a patient's body. In some embodiments, the 20 delivery tool 808 carrying the medical device is inserted through the vaginal incision that acts as the passageway for advancing the delivery tool 808. A force of insertion applied by the operator moves the medical device within the patient's body. Fingers of the operator may guide the delivery tool 808 25 inside the body to avoid blind delivery and hence, achieve effective advancement inside the body. The maximum depth of advancement through the vaginal incision must be limited to avoid perforation of the bladder wall.

In some embodiments, the anchors **802***a* and **802***b* of the 30 medical device can be directly coupled to the delivery tool **808** for insertion into the body. The anchors **806***a* and **806***b* can include slots or interfaces disposed on their proximal end portions such that a distal tip portion or a needle tip of the delivery tool **808** can be engaged through the slots or interfaces of the anchors **806***a* and **806***b*. This provides a coupling of the delivery tool **808** with the anchors **806***a* and **806***b* such that an engagement of the anchors **806***a* and **806***b* with the delivery tool **808** through the slots or the interfaces ensure proper delivery and insertion of the medical device into the 40 body tissues.

In accordance with some other embodiments, a delivery lead such as the delivery lead 302 may be utilized for inserting the medical device into the body. In some embodiments, the delivery lead 302 includes a loop that can be coupled to the 45 delivery tool 808. The loop is configured to be hooked to the delivery tool such that the delivery lead 302 is pushed into the body, upon insertion of the delivery tool 808 through the vaginal incision, and comes out through groin area or abdomen of the patient. The delivery lead 302 can be finally 50 unhooked from the tool 808 and the tool 808 is pulled out through the vaginal incision backward. In some embodiments, the delivery lead 302 is then pulled outside to leave the anchors **802***a* and **802***b* inside the body. In accordance with various other embodiments, several other types of bodily 55 incisions and insertion mechanisms may be employed to insert the medical device inside the patient's body depending on the preference of an operator or a physician and the condition of the patient to be treated.

Once the medical device is inserted and placed within the 60 body, the tension of the bodily implant **804** is adjusted at step **808**. In some embodiments, the operator may adjust the tension of the bodily implant **804** by stretching it manually after placement at its targeted location. In other embodiments, the tension may be adjusted by a tension member such as a suture. 65 Various other procedures of adjusting tension may be utilized without limitations.

10

After an appropriate tension is confirmed in the bodily implant 804, it is anchored within the body tissues at step 810 by exerting a force capable of rotating the anchors 802a and 80b such that the second axis of the anchors 802a and 80b forms an angle with the first axis with respect to the anchors 802a and 80b. The anchoring is done by using the two anchors 802a and 80b that are coupled at the two end portions 806a and 806b of the bodily implant 804 through their implant engaging portions. For example, the first end portion 806a of the bodily implant 804 is anchored in a first portion of the body tissues using the first anchor 802a and the second end portion 806b of the bodily implant 804 is anchored in a second portion of the body tissues using the second anchor 802b.

In some embodiments, the anchoring of the bodily implant **804** is done by first exerting a force on the bodily implant **804** outward at a portion that extends and hangs out of the patient's body. For example, a force may be exerted on the bodily implant **804** outward to anchor the first end portion **806***a* of the bodily implant **804** using the first anchor **802***a*. This causes the development of a pulling force that acts in a direction opposite to the direction of the insertion as a result of an interaction of the bodily implant **804** with the body tissues. Since the first end portion **806***a* of the bodily implant **804** is asymmetrically coupled on the lateral portion of the first anchor **802***a* within the implant engaging portion, the pulling force develops at the lateral portion of the first anchor **802***a* eccentrically and not to the centre.

As a result of the development of the pulling force, a holding force starts developing at a catching point. The catching point is present on the bottom proximal right side of the anchor 802a. When the anchor 802a is placed inside the body and the implant is pulled down, the anchor 802a slightly goes down and hits the passageway at the catching point. This helps pivot the anchor 802a into a rotated configuration with respect to the passageway. The holding force at the catching point and the pulling force along the bodily implant 804 form a force couple or a turning momentum, which rotates the first anchor 802a. The rotation of the anchor 802a makes the distance between the forces of the turning momentum greater, thereby increasing the turning momentum even more. In this scenario, snow cone effect develops that tilts the anchor 802a by an angle formed between the first axis and the second axis. Therefore, the first anchor **802***a* is lodged within the tissues and creates a large holding force capable of restoring the anchor 802a at the desired position. The mechanics of the forces is illustrated in FIG. 10. As illustrated in the FIG. 10, 'P' represents the pulling force applied along the bodily implant 804, 'H' represents the holding force generated as a result of the pulling force, 'Ø' represents the angle formed between the first axis and the second axis after the first anchor **802***a* rotates, 'd' represents a distance between the lines of action of the two forces—the holding force and the pulling

The turning momentum at an engagement point of the implant engaging portion and the bodily implant 804 that causes rotation of the anchor 802a tries to bring it downward with respect to the body tissues. This changes the direction of the first anchor 802a and its proximal end portion now faces opposite to the lateral edge of the bodily implant 804 in a transverse direction, thereby engaging it with the body tissues at the catching point. The angle of rotation resulting from the effect of the turning momentum may be measured as an angle formed between the first axis defined by the passageway and the second axis defined by the longitudinal direction of the first anchor 802a joining the proximal and distal end portions

of the first anchor 802a. The angle thus formed between the first axis and the second axis as a result of rotation is depicted in FIGS. 5 and 10 as \emptyset .

The anchoring of the first end portion **806***a* of the bodily implant 804 is achieved by rotating the anchor 802a on appli- 5 cation of a pulling force on the bodily implant 804 as described above. In accordance with other embodiments, the turning momentum that is capable of rotating the first anchor **802***a* can be generated by pulling a second lead termed as a tilt control 402 as illustrated in FIG. 4 from its distal end. A 10 proximal end of the tilt control lead 402 is coupled to the proximal end of the first anchor 802a in a manner as described in conjunction with FIG. 4. The operator may exert a force on the tilt control lead 402 to rotate the anchor 802a such that the second axis defined by the longitudinal direction of the first 15 anchor 802a makes an angle Ø with the first axis defined by the passageway. In accordance with still other embodiments, a pulling force on the bodily implant 804 as well as a pulling force on the tilt control lead 402 can be applied together to achieve a desired angle Ø between the first axis and the 20 second axis such that the anchor 802a is appropriately lodged in the body tissues.

In a manner similar to the anchoring of the first end portion **806***a* of the bodily implant **804** with the use of the first anchor **802***a* at the first implant engaging portion, the second end 25 portion **806***b* of the bodily implant **804** may also be anchored using the second implant engaging portion of the second anchor 802b. The second implant engaging portion is coupled at the second end portion 806b of the bodily implant 804. In this scenario, an angle is formed between the first axis and the second axis with respect to the second anchor 802b. In some embodiments, the angle formed between the first axis and the second while anchoring the first anchor 802a is same as the angle formed between the first axis and the second while anchoring the second anchor 802b. In other embodiments, the 35 angle formed between the first axis and the second while anchoring the first anchor 802a is different than the angle formed between the first axis and the second while anchoring the second anchor 802b. In accordance with various embodiments, the rotation angle Ø formed between the first axis and 40 the second axis may vary based on the requirements such as the intended use and placement location of the bodily implant

In accordance with various embodiments, re-positioning of the bodily implant **804** may be done in case the bodily implant **804** is found to be placed incorrectly. In order to reposition the bodily implant **804**, the operator may exert a force on the delivery lead **302** coupled to the distal end portion of the anchor such as the anchor **802***a* and **802***b*. An appropriate force on the delivery lead **302** aligns the second axis with the first axis such that the longitudinal direction of the anchor such as the anchor **802***a* and **802***b* coincides with the direction of the passageway. Thus, the anchor such as the anchor **802***a* and **802***b* are no more in a rotated configuration. The operator adjusts the placement of the anchor (**802***a* and **802***a*) and finally rotates them in accordance with various embodiments described above.

In some embodiments, the anchors 802a and 802b can be left to stay inside the body tissues. In some other embodiments, the anchors 802a and 802b can be removed from the 60 patient's body. The anchors 802a and 802b can be removed by exerting a force on the tilt control lead such that the anchors 802a and 802b are rotated by 180 degree (with respect to the direction of the passageway) to align the first axis and the second axis. This makes the distal ends of the 65 anchors 802a and 802b face toward the direction of the passageway such that a simple pull applied on the distal ends of

12

the anchors 802a and 802b can remove them outside the patient's body. In some other embodiments, the anchors (802a and 802b) can be removed even without rotating through the 180 degree angle. In accordance with these embodiments, a simple pull is required at the delivery lead 302 or at the delivery lead 302 and the bodily implant 804 together to straighten the anchors (802a and 802b) such that the first axis coincides with the second axis. In this scenario, a pull of magnitude equivalent to rotate the anchors (802a and 802b) by an angle \emptyset and in opposite direction can straighten the anchors (802a and 802b) can be easily removed from the body by pulling them outside manually in a backward direction once they are in straight configuration.

The method for implanting and anchoring a bodily implant using anchors is described in conjunction with the bodily implant 804 and the anchors 802a and 802b above. However, the anchors such as 102 and 202 can also be used to anchor the bodily implant in accordance with various other embodiments of the present invention. Similarly, the bodily implant 104, 304, and various other kinds of bodily implants as used conventionally may also be employed.

In one embodiment, an anchor for anchoring a bodily implant within a body of a patient includes a distal end portion configured to pass through a passageway in the patient's body, the passageway defining a first axis and a proximal end portion disposed longitudinally opposite to the distal end portion on the anchor. The anchor defines a second axis extending from the distal end portion to the proximal end portion. A medial portion having an implant engaging portion for engaging the bodily implant, the implant engaging portion disposed on a lateral portion of the anchor. The anchor is configured to rotate such that the second axis defined by the anchor forms an angle with the first axis defined by the passageway upon rotation.

In some embodiments, the implant engaging portion includes at least one protuberance for engaging the bodily implant therewith. In some embodiments, the implant engaging portion includes a movable locking mechanism for engaging the bodily implant. In some embodiments, the implant engaging portion includes a slidable locking mechanism for engaging the bodily implant. In some embodiments, the implant engaging portion includes a first protuberance and a second protuberance configured to interlock with each other and engage the bodily implant therewithin.

In some embodiments, the proximal end portion defines an opening for coupling a tilt control lead with the anchor. In some embodiments, the anchor is configured to be rotated when a force is exerted on the tilt control lead. In some embodiments, the anchor is rotated to align the first axis and the second axis for removal of the anchor such that the distal end portion faces the passageway.

In some embodiments, the proximal end portion is substantially cylindrical. In some embodiments, the distal end portion is substantially conical. In some embodiments, the distal end portion defines an opening for engaging a delivery lead with the anchor. In some embodiments, the anchor is composed of at least one of a bio-compatible material, plastic, polypropylene, metal, ceramic, polymer, magnet, and alloy.

In some embodiments, a medical device is configured to be inserted within a body of a patient. The medical device includes a bodily implant and an anchor. The anchor includes a distal end portion configured to pass through a passageway in the patient's body, the passageway defining a first axis and a proximal end portion disposed longitudinally opposite to the distal end portion on the anchor. The anchor defines a second axis extending from the distal end portion to the

proximal end portion and a medial portion having an implant engaging portion for engaging the bodily implant. The implant engaging portion disposed on a lateral portion of the anchor. The anchor is configured to rotate such that the second axis defined by the anchor forms an angle with the first axis 5 defined by the passageway upon rotation.

In some embodiments, the implant engaging portion includes at least one protuberance for engaging the bodily implant therewith. In some embodiments, the implant engaging portion includes a movable locking mechanism for engaging the bodily implant. In some embodiments, the implant engaging portion includes a slidable locking mechanism for engaging the bodily implant. In some embodiments, the implant engaging portion includes a first protuberance and a second protuberance configured to interlock with each other 15 and engage the bodily implant therewithin.

In some embodiments, the proximal end portion defines an opening for coupling a tilt control lead with the anchor. In some embodiments, the anchor is configured to be rotated when a force is exerted on the tilt control lead. In some 20 embodiments, the anchor is rotated to align the first axis and the second axis for removal of the anchor and such that the distal end portion faces the passageway.

In some embodiments, the proximal end portion is substantially cylindrical. In some embodiments, the distal end por- 25 tion is substantially conical. In some embodiments, the distal end portion defines an opening for engaging a delivery lead with the anchor. In some embodiments, the anchor is composed of at least one of a bio-compatible material, plastic, polypropylene, metal, ceramic, polymer, magnet, and alloy. 30

In some embodiments, the bodily implant is a mesh. In some embodiments, the bodily implant is composed of a bio-compatible material. In some embodiments, the bodily implant comprises at least one end portion, wherein the at least one end portion of the bodily implant is engaged with the 35 able locking mechanism for engaging the bodily implant. anchor at the implant engaging portion.

In some embodiments, a method for anchoring a bodily implant within a body of a patient includes (1) inserting the bodily implant within the patient's body through a passagebodily implant being coupled to a lateral portion of an anchor, the anchor defining a second axis extending from a distal end portion of the anchor to a proximal end portion of the anchor; and (2) exerting a force configured to rotate the anchor such that the second axis defined by the anchor forms an angle with 45 the first axis defined by the passageway.

In some embodiments, the anchor is a first anchor and the end portion is a first end portion of the bodily implant. The method includes coupling a second end portion of the bodily implant to a second anchor at a lateral portion of the second 50 anchor.

In some embodiments, the method includes inserting an elongated member into the patient's body to create the passageway therein. In some embodiments, the method includes exerting a force on a delivery lead coupled to the distal end 55 of at least one of a bio-compatible material, plastic, polyproportion of the anchor to align the second axis with the first axis. In some embodiments, the method includes exerting a force on a tilt control lead to rotate the anchor such that the second axis defined by the anchor is aligned with the first axis defined by the passageway.

While the invention has been disclosed in connection with the preferred embodiments shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. Accordingly, the spirit and scope of the present invention is not to be limited by the foregoing examples, but is to be understood in the broadest sense allowable by law.

14

What is claimed is:

- 1. An anchor for anchoring a bodily implant within a body of a patient, the anchor comprising:
 - a distal end portion configured to pass through a passageway in the patient's body, the distal end portion having a lumen defined therethrough, the passageway defining a first axis:
 - a removable delivery lead extending through the lumen, the delivery lead configured to facilitate insertion of the anchor in the passageway;
 - a proximal end portion disposed longitudinally opposite to the distal end portion on the anchor, the proximal end portion including a tilt control lead,
 - wherein the anchor defines a second axis extending from the distal end portion to the proximal end portion, the second axis being substantially parallel with the first axis defined by the passageway when the anchor is inserted in the passageway; and
 - a medial portion having an implant engaging portion for engaging the bodily implant, the implant engaging portion disposed on a lateral portion of the anchor, the implant engaging portion including a first protuberance and a second protuberance configured to engage the bodily implant, at least one of the first protuberance and the second protuberance being movable relative to a body of the anchor so as to engage the bodily implant,
 - the tilt control lead extending from the proximal end portion, the tilt control lead being configured to facilitate rotation of the anchor in the passageway such that the second axis defined by the anchor is non-parallel with the first axis defined by the passageway to help secure the anchor in the passageway.
- 2. The anchor of claim 1, wherein at least one of the first protuberance and the second protuberance includes a mov-
- 3. The anchor of claim 1, wherein at least one of the first protuberance and the second protuberance includes a slidable locking mechanism for engaging the bodily implant.
- 4. The anchor of claim 1, wherein the first protuberance and way, the passageway defining a first axis, an end portion of the 40 the second protuberance are configured to interlock with each other.
 - 5. The anchor of claim 1, wherein the proximal end portion defines an opening for coupling the tilt control lead with the
 - 6. The anchor of claim 5, wherein the anchor is configured to be rotated when a force is exerted on the tilt control lead.
 - 7. The anchor of claim 1, wherein the anchor is rotated to align the first axis and the second axis for removal of the anchor such that the distal end portion faces the passageway.
 - 8. The anchor of claim 1, wherein the proximal end portion is substantially cylindrical.
 - 9. The anchor of claim 1, wherein the distal end portion is substantially conical.
 - 10. The anchor of claim 1, wherein the anchor is composed pylene, metal, ceramic, polymer, magnet, and alloy.
 - 11. A medical device configured to be inserted within a body of a patient, the medical device comprising:

a bodily implant;

an anchor including:

- a distal end portion configured to pass through a passageway in the patient's body, the passageway defining a first axis;
- a proximal end portion disposed longitudinally opposite to the distal end portion of the anchor, the anchor defining a second axis extending from the distal end portion to the proximal end portion;

- a medial portion having an implant engaging portion for engaging the bodily implant, the implant engaging portion disposed on a lateral portion of the anchor;
- a lumen formed through the proximal portion; and a tilt control lead extending proximally from the lumen, wherein the tilt control lead, when manipulated by an operator, rotates the anchor from the proximal end portion such that the second axis defined by the anchor forms a non-zero angle with the first axis defined by the
- passageway to help secure the anchor in the passageway; a delivery lead extending from the distal end portion, the

delivery lead configured to be removeably coupled with the anchor and facilitate insertion of the anchor in the passageway.

12. The medical device of claim 11, wherein the implant

engaging portion includes at least one protuberance for engaging the bodily implant therewith.

- 13. The medical device of claim 11, wherein the implant engaging portion includes a movable locking mechanism for 20 engaging the bodily implant.
- 14. The medical device of claim 11, wherein the implant engaging portion includes a slidable locking mechanism for engaging the bodily implant.
- 15. The medical device of claim 11, wherein the implant 25 engaging portion includes a first protuberance and a second protuberance configured to interlock with each other and engage the bodily implant therewithin.
- 16. An anchor for anchoring a bodily implant within a body of a patient, the anchor comprising:
 - a distal end portion configured to pass through a passageway in the patient's body, the passageway defining a first axis, the distal end portion having a lumen formed therethrough;

16

- a removable delivery lead extending through the lumen and away from the distal end portion, the delivery lead configured to facilitate insertion of the anchor in the passageway:
- a proximal end portion disposed longitudinally opposite to the distal end portion on the anchor.
- wherein the anchor defines a second axis extending from the distal end portion to the proximal end portion;
- a medial portion having an implant engaging portion for engaging the bodily implant, the implant engaging portion disposed on a lateral portion of the anchor and including at least one protuberance for engaging the bodily implant therewith, the at least one protuberance being aligned along the second axis, the implant engaging portion further including a movable locking mechanism for engaging the bodily implant; and
- a tilt control lead extending from the proximal end portion, the tilt control lead being configured to facilitate rotation of the anchor such that the second axis defined by the anchor forms a non-zero angle with the first axis defined by the passageway to help secure the anchor in the passageway.
- 17. The anchor of claim 16, wherein the at least one protuberance includes a first protuberance and a second protuberance configured to interlock with each other and engage the bodily implant.
- 18. The anchor of claim 16, wherein the proximal end portion defines an opening for coupling the tilt control lead with the anchor.
- 19. The anchor of claim 16, wherein the anchor is configured to be rotated when a force is exerted on the tilt control lead.